Cloud Computing Solutions for Genomics Across Geographic, Institutional and Economic Barriers

Ntinos Krampis Asst. Professor J. Craig Venter Institute kkrampis@jcvi.org

http://www.jcvi.org/cms/about/bios/kkrampis/

Workshop Schedule

Morning Session: Background Presentations and Prep

9:00 - 9:45	Introduction to Cloud Computing for Bioinformatics
9:45 – 10:00	Questions and Answers
10:00 – 10:30	Using Cloud BioLinux on the Amazon EC2 Cloud
11:00 – 12:00	Preparation: install Cloud Virtual Machines on laptops
	Afternoon Session: Hands on Session
1:30 – 3:30	Bioinformatic Analysis using Cloud BioLinux
3:30 – 5:00	Customized Bioinformatics Solutions for Participants

A little bit of background information...

- Konstantinos (Ntinos) Krampis, started working at J. Craig Venter Inst. (JCVI) in 2009
- Background training in Molecular Biology, PhD in Bioinformatics
- Research: cloud and high-performance computing, genome assembly
- Projects: Cloud BioLinux (cloudbiolinux.org)
- Taught Cloud BioLinux workshop at Univ. of Limpopo last May
- Slides available at http://www.slideshare.com/
- Email me for slides, meeting, questions: kkrampis@jcvi.org

J. Craig Venter Institute (JCVI)

Large-scale genome sequencing and bioinformatics computing

- Human Microbiome Project (HMP): genome sequencing of microbes living in and on the human body
- Global Ocean Sampling (GOS) survey: genome sequencing of microbes sampled from oceans around the world

JCVI: sequencing and computing infrastructure

- core sequencing laboratory: 454, Solexa, HiSeq, IonTorrent on the way
- dedicated bioinformatics department (57 bioinformaticians)
- large-scale computations, ~1000 node Sun Grid Engine (SGE) cluster

Low-cost sequencing instruments

- small-factor sequencers available: GS Junior by 454, MiSeq by Illumina
- bacterial, viral, small fungal genomes, sequencing for variant discovery
- sequencing as a standard technique in molecular biology and genetics
- RNAseq (instead of microarrays) and ChiPseq (instead of yeast 2-hybrid)

More small laboratories doing genome sequencing

acquiring the sequence data is only the first step...

Sequencing instruments shipped with minimal computational capacity

- <u>Problem 1</u>: sequencing data analysis requires high-performance and expensive computing hardware, for example: genome assembly, BLAST, genome annotation
- <u>Problem 2</u>: much of bioinformatics software are difficult to install by biologists, need technical expertise with operating systems, compiling source code etc.

Each lab building their own informatics infrastructure?

- small labs need additional funds to build computing clusters
- funds for bioinformaticians and software developers to maintain the clusters and software
- duplication of effort across labs
- sub-optimal utilization of the hardware due to small amounts of sequencing

Large sequencing centers offering bioinformatics analysis services?

- Bioinformatic Resource Centers (BRC)
- bioinformatic analysis coupled with sequencing of an organism
- mostly provide data browsing and few analysis tools to the public
- cannot serve the bioinformatic needs of every small lab acquiring a sequencing instrument
- need end-to-end solutions, users submit sequence data and get final annotation

Solving Problem 1: using high-performance computing hardware available on the cloud

- cloud computing: high performance computers and data storage, remotely accessible through the Internet
- we are all using the cloud: Gmail,
 Google Docs, FaceBook; you store and access data on a remote computer
- cloud computers rented pay-as-you-go by service providers such as Amazon Elastic Compute Cloud (EC2)

The Amazon EC2 cloud computing service

- a subsidiary company of Amazon.com, rents computing pay-as-you go
- cloud computers cost \$0.085 \$2 per hr (max 64GB memory and 8 processors)
- used by companies that need additional computers without investing on hardware
- physical locations US East / West regions, EU, Singapore, Japan researchers
- democratizes access to computing resources outside of institutional, economic or national boundaries

750 hours free for new users, sign up here: http://aws.amazon.com/free/

How does cloud computing work?

- Cloud computing evolved from Virtualization technology
- operating system, bioinformatics software and data, are installed on a Virtual Machine (VM)
- a VM is a full-featured Unix server, in a single, executable binary file
- no need to compile source code, set up configuration files, software installation dependencies
- why Virtualization: simplify IT maintenance

Virtual Machine

How does cloud computing work?

- a VM is uploaded on the cloud service; runs by renting computing capacity from Amazon EC2
- bioinformatics software can be executed from anywhere in the world through a desktop computer with Internet access
- removes need for local computer clusters at each laboratory
- alternatively if you have a cluster locally it can run on a private cloud

remote Amazon EC2 cloud computing service

local desktop computers

Solving problem 2: pre-installed and configured bioinformatics software on cloud Virtual Machines

- Cloud BioLinux: a publicly accessible Virtual Machine (VM) on the Amazon EC2 cloud
- 100+ pre-configured and installed bioinformatics software tools
- sequence analysis, genome assembly, annotation, phylogeny, molecular modeling, gene expression
- a researcher can initiate a practically unlimited number of VMs for large-scale data analysis and access them using a local desktop computer

Cloud BioLinux for Bioinformatics

- how the Cloud BioLinux project came to be, what it can offers to small labs for genome sequence analysis
- where and how do I run Cloud BioLinux , especially if I am not a computer expert
- besides end-users, bioinformatics developers are provided a framework for modifying and sharing VM configurations and data

Before we go on, a short break for questions...

Creating Cloud Biolinux

- JCVI bioinformatics cloud computing research
- NEBC BioLinux software repository
- community effort at BOSC 2009 11
- initially: a VM on Amazon EC2 with the tools copied and installed from the NEBC repository
- now: framework for creating customized cloud VMs
- major contributors:

http://www.cloudbiolinux.org

Research at JCVI with Cloud BioLinux

- Eucalyptus private cloud currently installed at JCVI, OpenStack on the way
- open-source cloud platforms, fully compatible with Amazon EC2 (identical API)
- easy to set up on a local computer cluster, comes with Ubuntu server (UEC)
- develop VMs in-house with complex bioinformatics pipelines pre-installed and upload to Amazon EC2 for public access

Research at JCVI with Cloud BioLinux

- Funded by NIAID until 2013, focus on Viral sequencing-to-annotation data pipelines
- bioinformatics data analysis pipelines have complex dependencies: operating system, software libraries, reference databases etc.
- approach: pre-install pipelines and all dependencies in a single binary VM file using a private cloud
- upload VM on Amazon EC2: pipelines ready to execute, no need to purchase hardware
- benefits small laboratories that lack resources
- if you own a cluster: download and run VM on your private Eucalyptus or Openstack cloud

JCVI - GSC

Phase I, sequencing and assembly

Phase I, sequencing and assembly

Phase II, annotation

- assembly as input to Viral Genome ORF Reader (VIGOR) pipeline
- detect coding regions, frame shifts, overlapping and embedded genes
- used for annotating the influenza virus, rotavirus, rhinovirus, coronavirus and subtypes

Phase III, visualization and community annotation

- Apollo genome annotation viewer and editor
- used for collaborative annotation of the Drosophila genome
- fully integrated annotation tracks (ORFs, homologous genes, features etc.)

Running Cloud BioLinux on the Amazon EC2 cloud

Account on the Amazon EC2 cloud http://aws.amazon.com/ec2

Launch Cloud BioLinux through the EC2 cloud console

Cloud BioLinux launch wizard: steps 1 & 2

1. go to the "Community AMIs" tab, specify the Cloud BioLinux VM identifier (most recent update: cloudbiolinux.org)

2. select computational capacity

Cloud BioLinux launch wizard: step 3

3. specify a password for login to Cloud BioLinux in the "User Data" box

Distributing Data Analysis Results with Cloud BioLinux

Distributing Data Analysis Results with Cloud BioLinux

Whole System Snapshot Exchange

- how difficult is to share bioinformatics work on your computer with a collaborator?
- capture the state of the computing system (OS + software), data, analysis results
- make VM snapshots: executable, binary file replica of the original VM
- distribute a VM snapshot with pre-installed software and data so collaborators can replicate, re-run, add to your data analysis
- a snapshot can be shared directly on the Amazon cloud, downloaded on a private cloud or run on desktop using virtualization software

Cloud BioLinux: whole system snapshot exchange

storage cost: 0.10\$ / GB / month

Cloud BioLinux: whole system snapshot exchange

5 min of questions, and then

5 more min to close the session....

Cloud BioLinux for Software Developers

- Issue 1: for researchers with sensitive data a public cloud might not be an option
- Problem 1: moving VMs across clouds is not trivial, need low level operations
- Issue 2: bioinformatic specializations (ex. sequencing, phylogeny, protein structure)
- Problem 2: one VM to fit all becomes over-sized
- Cloud BioLinux VM deployment framework

Cloud BioLinux for Software Developers

- framework to describe software components in cloud VM / image
- based on python Fabric automated deployment tool
- software components listed in simple text files
- edit the files to mix and match software according to your community needs
- community members use files to share descriptions of customized systems
- start with a bare-bones VM on Amazon EC2 or Eucalyptus private cloud
- Fabric scripts download and install specified software

bcbb / ec2 / biolinux / config / main.yaml 🗈

```
100644 | 39 lines (38 sloc) | 0.668 kb
    # Top level configuration file that specifies w
    # should be installed. New sections that are ad
    # files should go here. Comment out any groups
     # installed.
    packages:
       - desktop
      - programming
       - distributed
       - amazon
      - python
      - ruby
14
      - perl
       - java
       - erlang
       - haskell
       - databases
       - math
       - viz
       - web
      - bio_general
      - bio_search
       - bio_alignment
      - bio_nextgen
      - bio_sequencing
      - bio_annotation
      - bio_microarray
```

- bio_visualization

- bio_utils

- phylogeny

software domains in Cloud BioLinux:

Genome sequencing, *de novo* assembly, annotation, phylogeny, molecular structures, gene expression analysis

high-level configuration describing software groups for each group individual bioinformatics tools

```
bcbb / ec2 / biolinux / config / packages.yaml
```

```
516 - apache2
517 bio_general:
518 - emboss
519 - emboss-data
520 - emboss-lib
521 - primer3
522 - readseq
523 - bio-linux-taverna
524 - bio-linux-xcut
525 bio_search:
526 - blast2
- hmmer
528 - ncbi-tools-bin
529 - bio-linux-blast+
```


Team

- Ntino Krampis PI, Cloud BioLinux
- Andrey coPI, NSF-MicrosoftCloud Research grant
- ► Tim Stockwell Investigator Viral Group at JCVI
- Ramana Madupu Investigator,
 Genomic Annotation experience
- ► Tim Prindle Soft. Engineer, 20+ years

- ► Alex Richter Soft. Engineer, 15+ years
- Systems Administrator JCVI's Eucalyptus cloud and VMs

- **▶** Funding:
- Maria Giovanni NIAID
- Punam Mathur NIAID
- Karen Nelson JCVI

Acknowledgments & Credits

Brad Chapman - development of the Fabric scripts, website

Tim Booth, Mesude Bicak, Dawn Field — BioLinux 6.0 development

Enis Afgan — Cloudman and Cloud BioLinux integration

Members of the Cloud Biolinux community:

http://groups.google.com/group/cloudbiolinux

And again our contacts:

kkrampis@jcvi.org

http://www.cloudbiolinux.org

Thank you!

